Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks.
نویسندگان
چکیده
Zeolitic imidazolate frameworks (ZIFs) have attracted great interest in recent years due to their high chemical and thermal stability with promising applications in gas storage and separations. We investigate the structures of three different crystalline ZIFs - ZIF-4, ZIF-8, ZIF-zni - and their amorphous counterparts using high field (13)C and (15)N CP MAS NMR. The high field (20 T) allows for the observation of all crystallographically independent carbon and nitrogen atoms in the crystalline ZIFs. Combining our experimental results with density functional theory calculations enabled the assignment of all chemical shifts. The crystalline spectra reveal the potential of high field NMR to distinguish between two ZIF polymorphs, ZIF-4 and ZIF-zni, with identical [Zn(C3H3N2)2] chemical compositions. (13)C and (15)N CP MAS NMR data obtained for the amorphous ZIFs clearly showed signal broadening upon amorphization, confirming the retention of chemical composition and the structural similarity of amorphous ZIF-4 and ZIF-zni. In the case of amorphous ZIF-8, we present evidence for the partial de-coordination of the 2-methyl imidazole linker.
منابع مشابه
A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks.
A series of five zeolitic imidazolate frameworks (ZIFs) have been synthesized using zinc(II) acetate and five different 4,5-functionalized imidazole units, namely ZIF-25, -71, -93, -96, and -97. These 3-D porous frameworks have the same underlying topology (RHO) with Brunauer-Emmet-Teller surface areas ranging from 564 to 1110 m(2)/g. The only variation in structure arises from the functional g...
متن کاملNMR and X-ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks
NMR relaxation studies and spectroscopic measurements of zeolitic imidazolate framework-8 (ZIF-8) are reported. The dominant nuclear spin−lattice relaxation (T1) mechanism for ZIF-8 in air arises from atmospheric paramagnetic molecular oxygen. The C T1 measurements indicate that the oxygen interacts primarily with the imidazolate ring rather than the methyl substituent. Similar relaxation behav...
متن کاملAmorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling.
We report the rapid amorphization of the prototypical substituted zeolitic imidazolate framework, ZIF-8, by ball-milling. The resultant amorphous ZIF-8 (a(m)ZIF-8) possesses a continuous random network (CRN) topology with a higher density and a lower porosity than its crystalline counterpart. A decrease in thermal stability upon amorphization is also evident.
متن کاملInvestigation of zeolitic imidazolate frameworks using 13C and 15N solid-state NMR spectroscopy.
Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal-organic frameworks (MOFs) with extended three-dimensional networks of transition metal nodes (bridged by rigid imidazolate linkers), with potential applications in gas storage and separation, sensing and controlled delivery of drug molecules. Here, we investigate the use of 13C and 15N solid-state NMR spectroscopy to characterise th...
متن کاملPorous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8 (ZIF-8)
Metal-organic frameworks (MOFs) are emerging material class for the past few years due to its tailorability characteristics for various applications. However, the research and development (R&D) of MOFs is still scarce for fuel cell system. This may be due to the several difficulties faced in selecting a good MOFs-based electrolyte, which consequently affects both proton conduction and methanol ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 38 شماره
صفحات -
تاریخ انتشار 2015